Curso de engenharia ambiental



Baixar 70.46 Kb.
Encontro21.07.2016
Tamanho70.46 Kb.


UNIVERSIDADE DO ESTADO DO PARÁ

CURSO DE ENGENHARIA AMBIENTAL

TRATAMENTO DE ÁGUAS RESIDUÁRIAS

PROFESSORA ANDRÉA FAGUNDES FERREIRA



TRATAMENTO DE ÁGUAS RESIDUÁRIAS

APOSTILA-AULAS TEÓRICAS




Parte I



2008
INTRODUÇÃO
No Brasil, 49% do esgoto produzido é coletado através de rede e somente 10% do esgoto total é tratado. O resultado é que as Regiões Metropolitanas e grandes cidades concentram grandes volumes de esgoto coletado que é despejado sem tratamento nos rios e mares que servem de corpos receptores. Em conseqüência a poluição das águas que cercam nossas maiores áreas urbanas é bastante elevada, dificultando e encarecendo, cada vez mais, a própria captação de água para o abastecimento.

A implantação de uma estação de tratamento de esgotos tem por objetivo a remoção dos principais poluentes presentes nas águas residuárias, retornando-as ao corpo d’água sem alteração de sua qualidade.

A escolha do sistema de tratamento é função das condições estabelecidas para a qualidade da água dos corpos receptores2. Além disso, qualquer projeto de sistema deve estar baseado no conhecimento de diversas variáveis do esgoto a ser tratado, tais como a vazão, o pH, a temperatura, o DBO, etc.
CAPÍTULO 1- Características dos Esgotos e Necessidades de Tratamento
1.1. Características dos Esgotos

Os esgotos sanitários variam no espaço, em função de diversas variáveis desde o clima até hábitos culturais. Por outro lado, variam também ao longo do tempo, o que torna complexa sua caracterização. Metcalf & Eddy (1991) classificam os esgotos em forte, médio e fraco, conforme as características apresentadas na Tabela abaixo:


Tabela : Características físico-químicas dos esgotos. Fonte: Metcalf & Eddy (1991)


No Brasil, mesmo que não se tenha informação segura com base local, costuma-se adotar contribuições “per capita” de 54 e 100 g/habitante.dia para a DBO de cinco dias e para a DQO, respectivamente. Em termos de vazão, pode-se afirmar que os esgotos estão sujeitos às mesmas variações relativas ao consumo de água, variando de região para região, dependendo principalmente do poder aquisitivo da população. Apenas a título de referência, pode-se considerar a contribuição típica de 160 L/habitante.dia, referente ao consumo “per capita” de água de 200 L/habitante.dia e um coeficiente de retorno água/esgoto igual a 0,8. Para a determinação das vazões máximas de esgotos, costuma-se introduzir os coeficientes k1 = 1,2 (relativo ao dia de maior produção) e k2 = 1,5 (relativo à hora de maior produção de esgotos). Consequentemente, a vazão de esgotos do dia e hora de maior produção é 1,8 vezes, ou praticamente o dobro da vazão média diária.

Deve ser lembrado que as características dos esgotos são afetadas também pela infiltração de água subterrânea na rede coletora e pela possível presença de contribuições específicas, como indústrias com efluentes líquidos ligados à rede pública de coleta de esgotos.

Os esgotos sanitários possuem excesso de nitrogênio e fósforo. Isto faz com que, ao ser submetido a tratamento biológico, haverá incorporação desses macronutrientes nas células que tomam parte do sistema, mas o excesso deverá ser ainda grande. Esta é uma importante preocupação em termos de tratamento de esgotos, exigindo tratamento avançado quando se tem lançamento em situações mais restritivas, sobretudo em represas utilizadas para o abastecimento público de água potável, onde o problema da eutrofização poderá ter consequências drásticas. Na Tabela abaixo são apresentados concentrações típicas das diversas frações de sólidos em esgotos:

Tabela : Concentrações de sólidos em esgotos. Fonte: Metcalf & Eddy (1991)



1.3. Concepção das Estações de Tratamento de Esgotos

O tratamento de esgotos é desenvolvido, essencialmente, por processos biológicos, associdos à operações físicas de concentração e separação de sólidos. Processos físicoquímicos, como os a base de coagulação e floculação, normalmente não são empregados por resultarem em maiores custos operacionais e menor eficiência na remoção de matéria orgânica biodegradável. Porém, em algumas situações, notadamente quando se tem condições bastante restritivas para as descargas de fósforo, o tratamento físico-químico pode ser aplicado isoladamente ou, principalmente, associado aos processos biológicos.

O tratamento biológico pode ser subdividido em dois grandes grupos, processos aeróbios e anaeróbios. Observou-se uma tendência historica em se comparar tais modalidades, enfatizando-se vantagens e desvantagens de cada grupo, hoje é consenso o interesse em associá-los, obtendo-se com isso importantes vantagens técnicas e econômicas.

Os processos biológicos podem ser classificados também em função do tipo de reator, que pode ser de crescimento em suspensão na massa líquida ou de biomassa aderida. Nos reatores de crescimento em suspensão, não há suporte inerte para a aderência dos microrganismos, que crescem geralmente floculados e em suspensão na massa líquida.

No caso dos reatores aeróbios, o próprio sistema de aeração acumula essa função complementar de manter os sólidos biológicos em suspensão. Nos reatores de biomassa

aderida, há introdução de material de enchimento como areia, pedras ou plástico, dentre

outros, que podem se manter fixos ou móveis no reator, garantindo a aderência da biomassa que cresce sob a forma de biofilme aderido ao meio inerte.

Os processos biológicos podem ser classificados ainda em função da retenção ou não de biomassa, entendendo-se por biomassa os microrganismos responsáveis pela degradação de matéria orgânica dos esgotos. Nos processos em que não se pratica retenção de biomassa, o tempo de detenção hidráulica, que é o tempo de passagem do esgoto pelo sistema, é equivalente ao tempo médio de residência celular, também conhecido por idade do lodo, que representa o tempo de permanência dos microrganismos no sistema.

Assim, se é desejado que os microrganismos permaneçam durante determinado período no reator, os esgotos deverão ser retidos pelo mesmo período, o que torna as dimensões do sistema relativamente elevadas. É o caso, por exemplo, das lagoas aeradas mecanicamente de mistura completa. Nos sistemas com retenção de biomassa, este mecanismo deverá ser produzido de alguma forma. Quando se empregam reatores de crescimento em suspensão na massa líquida, como são os tanques de aeração dos processos de lodos ativados, a retenção de biomassa é feita recirculando-se o lodo sedimentado nos decantadores posicionados à jusante do reator biológico. Já nos reatores de biomassa aderida, sejam de leito fixo ou móvel, a retenção de biomassa é garantida pela própria aderência dos microrganismos ao meio suporte formando os biofilmes. Os reatores com retenção de biomassa compõem os chamados sistemas de tratamento compactos que, por permitirem maior concentração de microrganismos ativos, possuem maior capacidade de recebimento de carga de esgotos quando se compara com mesmo volume de reator onde não se procede a retenção do lodo.

O processo de lodos ativados convencional é composto das seguintes etapas:

• Tratamento preliminar: gradeamento e desarenação

• Decantadores primários

• Tanques de aeração

• Decantadores secundários

• Adensadores de lodo

• Digestores de lodo

• Sistema de desidratação de lodo

Os decantadores primários providenciam uma redução da carga orgânica afluente ao tratamento biológico. O lodo separado nos decantadores secundários retornam para os tanque de aeração, mas há a necessidade de descarte do lodo excedente para o controle do processo biológico. Ambos os lodos, produzidos nos decantadores primários e secundários, podem ser encaminhados para uma digestão biológica conjunta.

Na variante do processo de lodos ativados conhecida por aeração prolongada, não se empregam decantadores primários e o tratamento biológico é dimensionado de forma a produzir um excesso de lodo mais mineralizado, de forma a se dispensar a necessidade de qualquer tipo de digestão complementar de lodo. Dispensando os decantadores primários e digestores de lodo, as principais etapas do sistema de lodos ativados com aeração prolongada são:

• Tratamento preliminar: gradeamento e desarenação

• Tanques de aeração

• Decantadores secundários

• Adensadores de lodo

• Sistema de desidratação de lodo

Em situações onde ocorrem grandes flutuações de população e, consequentemente, de carga orgânica, a variante com aeração prolongada pode operar sob o regime de bateladas sequenciais. Não se empregam também os decantadores secundários, sendo a função de separar o lodo do efluente final também atribuída aos tanques de aeração. Estes,são alimentados na forma de rodízio e a operação de sedimentação poderá ocorrer em tanques que não estejam sendo alimentados por esgotos em períodos pré-estabelecidos de forma sincronizada. Assim, um sistema de lodos ativados com aeração prolonga operando em batelas, fica reduzido a:

• Tratamento preliminar: gradeamento e desarenação

• Tanques de aeração e decantação

• Adensadores de lodo

• Sistema de desidratação de lodo

Note-se que não estão sendo incluídas as unidades correspondentes às outras necessidades de tratamento, como a desinfecção final ou a remoção de nutrientes por processos físico-químicos, dentre outras.

Um sistema de lagoas aeradas mecanicamente pode ser entendido como um processo de lodos ativados sem recirculação de lodo. As principais unidades que o compõem, são:

• Tratamento preliminar: gradeamento e desarenação

• Lagoas aeradas mecanicamente

• Lagoas de decantação

Não foram incluídas aqui as necessidades de remoção e tratamento do lodo separado das lagoas de decantação.

As lagoas aeradas mecanicamente foram concebidas para resolver problemas de sobrecargas em sistemas de lagoas de estabilização. Nestes as unidades centrais são as lagoas facultativas, desprovidas de aeradores mecânicos, sendo a aeração obtida da ventilação superficial e da fotossíntese de algas. São chamadas de facultativas por que ocorre sedimentação de particulas no fundo que entram em decomposição anaeróbia. As

lagoas facultativas podem ou não ser precedidas de lagoas anaeróbias, que provocam um alívio de carga, e sucedidas de lagoas de maturação, cujo principal objetivo é aumentar o grau de desinfecção dos esgotos. O chamado sistema australiano de lagoas de estabilização é composto de:

• Tratamento preliminar: gradeamento e desarenação

• Lagoas anaeróbias

• Lagoas facultativas fotossintéticas

• Lagoas de maturação
Voltando à concepção do processo de lodos ativados convencional, podemos entender um sistema de tratamento por filtros biológicos aeróbios, simplesmente substituindo-se as unidades principais do sistema, os tanques de aeração, pelos filtros biológicos. Porém, neste caso, normalmente não há necessidade de retorno de lodo. Assim, um sistema de tratamento de esgotos por filtros biológicos aeróbios é composto das seguintes unidades principais:

• Tratamento preliminar: gradeamento e desarenação

• Decantadores primários

• Filtros biológicos aeróbios

• Decantadores secundários

• Adensadores de lodo

• Digestores de lodo

• Sistema de desidratação de lodo

Uma das principais tendências atuais do tratamento de esgotos sanitários reside na inclusão de uma etapa inicial de tratamento anaeróbio. O reator anaeróbio que mais tem se consolidado em nosso meio é o reator conhecido por UASB (upflow anaerobic sludge blanket). Estes sistemas mistos são constituídos de tratamento preliminar e dos reatores UASB, que podem ter os seus efluentes complementarmente tratados por um dos seguintes processos alternativos:

• Lodos ativados

• Lagoas aeradas mecanicamente

• Lagoas de estabilização

• Filtros biológicos aeróbios

• Tratamento físico-químico

Em um importante estudo desenvolvido pelo PROSAB, Programa de Pesquisa em Saneamento Básico (Chernicharo, 2000), foram identificadas as seguintes características

dos esgotos tratados pelos diversos processos e composição de custos de implantação e operacionais:

• Processo de Lodos Ativados Convencional. A operação sob alta taxa ocorre com idade do lodo (θc) inferior a três dias, sem que seja esperada a nitrificação dos esgotos. Os esgotos tratados apresentam DBO5 e SS (sólidos em suspensão) inferiores a 30 mg/L e concentração de nitrogênio amoniacal (Namon) superior a 15 mg/L. O excesso de lodo produzido é da ordem de 35 a 40 g SSS / Hab.dia, sendo estabilizado. O custo de implantação é estimado entre R$ 100,00 e R$ 130,00 por habitante, para populações entre 200 e 600 mil habitantes. O consumo de energia para aeração é estimado em 12 kwh/hab.ano. A operação sob taxa convencional ocorre com idade do lodo (θc) entre 4 e 7 dias, ocorrendo a nitrificação dos esgotos. Os esgotos tratados apresentam DBO5 e SS (sólidos em suspensão) inferiores a 20 mg/L e concentração de nitrogênio amoniacal (Namon) inferior à 5 mg/L. O excesso de lodo produzido é da ordem de 30 a 35 g SS / Hab.dia, sendo estabilizado. O custo de implantação é estimado entre R$ 120,00 e R$ 160,00 por habitante, para populações entre 200 e 600 mil habitantes. O consumo de energia para aeração é estimado em 20 kwh/hab.ano.

• Processo de Filtros Biológicos Aeróbios de Alta Taxa. Os esgotos tratados apresentam DBO5 e SS (sólidos em suspensão) inferiores a 30 mg/L e concentração 7 de nitrogênio amoniacal (Namon) superiores à 15 mg/L. O excesso de lodo produzido é da ordem de 35 a 40 g SS / Hab.dia, sendo estabilizado. O custo de implantação é estimado entre R$ 100,00 e R$ 130,00 por habitante.

• Processo de Lodos Ativados com Aeração Prolongada. A operação sob alta taxa ocorre com idade do lodo (θc) na faixa de 20 a 30 dias, com nitrificação dos esgotos. Os esgotos tratados apresentam DBO5 inferior a 20 mg/L, SS (sólidos em suspensão) inferior a 40 mg/L e concentração de nitrogênio amoniacal (Namon) inferior à 5 mg/L. O excesso de lodo produzido é da ordem de 40 a 45 g SS / Hab.dia, sendo estabilizado aerobiamente, mais difícil de desidratar. O custo de implantação é estimado entre R$ 60,00 e R$ 80,00 por habitante, para populações entre 50 e 150 mil habitantes. O consumo de energia para aeração é estimado em 35 kwh/hab.ano.

• Processo com Reator UASB seguido de Lodos Ativados. A operação da etapa de lodos ativados sob alta taxa ocorre com idade do lodo (θc) inferior a três dias, sem que seja esperada a nitrificação dos esgotos. Os esgotos tratados apresentam DBO5 inferior a 20 mg/L e SS (sólidos em suspensão) inferior a 30 mg/L e concentração de nitrogênio amoniacal (Namon) superior a 20 mg/L. O excesso de lodo produzido é inferior à 20 g SSS / Hab.dia, sendo estabilizado. O custo de implantação é estimado entre R$ 50,00 e R$ 80,00 por habitante, para populações entre 50 e 500 mil habitantes. O consumo de energia para aeração é estimado em 6 kwh/hab.ano. A operação sob taxa convencional ocorre com idade do lodo (θc) entre 4 e 7 dias, esperando-se a nitrificação dos esgotos. Os esgotos tratados apresentam DBO5 inferior à 20 mg/Le SS (sólidos em suspensão) inferior a 30 mg/L e concentração de nitrogênio amoniacal (Namon) inferior à 5 mg/L. O excesso de lodo produzido é da ordem de 22 a 27 g SS / Hab.dia, sendo estabilizado. O custo de implantação é estimado entre R$ 70,00 e R$ 100,00 por habitante, para populações entre 50 e 500 mil habitantes. O consumo de energia para aeração é estimado em 15 kwh/hab.ano.

• Processo com reator UASB seguido de Filtro Biológico de Alta Taxa. Os esgotos tratados apresentam DBO5 e SS (sólidos em suspensão) inferiores a 30 mg/L e concentração de nitrogênio amoniacal (Namon) superiores à 20 mg/L. O excesso de lodo produzido é da ordem de 25 a 30 g SS / Hab.dia, sendo estabilizado. O custo de implantação é estimado entre R$ 50,00 e R$ 80,00 por habitante, para populações entre 20 e 200 mil habitantes.

• Processo com reator UASB seguido de Filtro Biológico Aerado Submerso. Os esgotos tratados apresentam DBO5 inferior a 20 mg/L e SS (sólidos em suspensão) inferior a 30 mg/L e concentração de nitrogênio amoniacal (Namon) superior à 20 mg/L. O excesso de lodo produzido é da ordem de 25 a 30 g SS / Hab.dia, sendo estabilizado. O custo de implantação é estimado entre R$ 80,00 e R$ 100,00 por habitante, para populações entre 20 e 200 mil habitantes. Energia para aeração: 6 kwh/hab.ano.

• Processo de Lagoas Aeradas Aeróbias seguidas de Lagoas de Decantação. Os esgotos tratados apresentam DBO5 inferior a 30 mg/L e SS (sólidos em suspensão) inferior a 40 mg/L e concentração de nitrogênio amoniacal (Namon) superior à 25 mg/L. O excesso de lodo produzido é da ordem de 15 a 25 g SS / Hab.dia, sendo estabilizado e removido a cada 4 a 5 anos. O custo de implantação é estimado entre R$ 50,00 e R$ 70,00 por habitante, para populações entre 30 e 200 mil habitantes. Energia para aeração: 22 kwh/hab.ano.
CAPÍTULOII- TRATAMENTO PRELIMINAR DE ESGOTOS
2.1.Considerações Iniciais

O tratamento preliminar de esgotos visa, basicamente, a remoção de sólidos grosseiros. Não há praticamente remoção de DBO, consiste em uma preparação dos esgotos para o tratamento posterior, evitando obstruções e danificações em equipamentos letromecânicos.

O tratamento preliminar é constituído de gradeamento e desarenação. O gradeamento objetiva a remoção de sólidos bastante grosseiros como materiais plásticos e de papelões constituintes de embalagens e a desarenação a remoção de sólidos com características de sedimentação semelhantes à da areia, que se introduz nos esgotos principalmente devido `a infiltração de água subterrânea na rede coletora de esgotos.

2.2. Gradeamento

Os dispositivos de remoção de sólidos grosseiros (grades) são constituídos de barras de ferro ou aço paralelas, posicionadas transversalmente no canal de chegada dos esgotos na estação de tratamento, perpendiculares ou inclinadas, dependendo do dispositivo de remoção do material retido. As grades devem permitir o escoamento dos esgotos sem produzir grandes perdas de carga.



Classificação das Grades

As grades podem ser classificadas de acordo com o espaçamento entre as barras, conforme a tabela abaixo:



Tabela : Classificação das grades. Fonte: Jordão e Pessoa (1995)

É conveniente quando se tem a necessidade de recalque dos esgotos para a estação de tratamento, que o tratamento preliminar seja posicionado à montante da estação elevatória, visando a proteção dos rotores das bombas de corrosão por abrasão. No entanto é prática mais usual apenas a instalação de uma grade grosseira à entrada da elevatória, posicionando-se uma grade média ou fina já no canal de entrada da ETE, normalmente de 1,5; 1,9 ou 2,5 cm de espaçamento entre barras. Dimensões das Barras e Inclinações das Grades As barras das grades são construídas pelos fabricantes segundo dimensões padronizadas, sendo que a menor dimensão da secção, que é posicionada frontalmente ao escoamento, varia em média de 5 a 10 mm e a dimensão maior, paralela ao escoamento, varia entre 3,5 e 6,5 cm, aproximadamente.

As grades com dispositivo de remoção mecanizada de material retido são implantadas com inclinações que variam de 70 a 90o, enquanto que as de remoção manual possuem inclinações variando geralemnte na faixa de 45 a 60o (ângulo formado pela grade e o 2 fundo do canal a jusante. O projeto de Norma Brasileira PNB - 570 impõe que para vazões de dimensionamento superiores a 250 L/s as grades deverão possuir dispositivo de remoção mecanizada do material retido.
Dispositivos de Remoção
Nas estações de grande porte, as grades devem possuir dispositivo mecanizado de remoção do material retido, que é constituído de um rastelo mecânico tipo pente cujos dentes se entrepõem nos espaços entre barras da grade. O rastelo é acionado por um sistema de correntes sendo que a remoção se dá no sentido ascendente e na parte superior o material é depositado sobre esteira rolante que o descarrega em caçamba. Nas grades manuais, o operador remove o material retido através de ancinho, quando a secção obstruída atinge cerca de 50% do total. O material removido é depositado em tambores ou caçambas possuindo orifícios no fundo para o escoamento da água.

A quantidade de material retido nas grades chega a atingir na prática cerca de 0,04 litros por m3 de esgoto. Na tabela abaixo relaciona-se a quantidade de material retido com o espaçamento entre barras das grades:


Tabela: Quantidade de material retido nas grades. Fonte: Jordão e Pessoa (1995)

O material retido pode sofrer processo de lavagem, secagem e adição de substâncias químicas antes do envio a aterros sanitários ou incineradores.


2.3. Desarenação (caixas de retenção de areia)
Características do Material Removido

A "areia" que infiltra no sistema de esgotos sanitários e que danifica equipamentos eletromecânicos é constituída de partículas com diâmetro de 0,2 a 0,4 mm e massa específica ρ = 2,54 ton/m3. Estas partículas sedimentam-se individualmente nas caixas com velocidade média de 2 cm/s.


Dispositivos de Remoção de Areia

De acordo com a NB-570, as caixas de areia de sistemas com remoção manual, devem-se ser projetados dois canais desarenadores paralelos, utilizando-se um deles enquanto que o outro sofre remoção de areia. Na remoção mecanizada utilizam-se bandejas de aço removidas por talha e carretilha, raspadores, sistemas de air lift, parafusos sem fim, bombas, etc. A "areia" retida deve ser encaminhada para aterro ou ser lavada para outras finalidades. Para redes de esgotos novas e não imersas no lençol freático a quantidade de areia retida é estimada em 30 litros por 1000 m3 de esgotos. Para situações desfavoráveis recomenda-se adotar 40L/1000m3.




Características Operacionais
As caixas de areia são projetadas para uma velocidade média dos esgotos de 0,30 m/s. Esta velocidade é mantida aproximadamente constante apesar das variações de vazão, através da instalação de uma calha Parshall a jusante. Velocidades baixas, notadamente as inferiores a 0,15 m/s provocam depósito de matéria orgânica na caixa, indicado pelo aumento da relação SSV/SST do material retido e que provoca exalação de maus odores devido à decomposição. Velocidades superiores a 0,40 m/s provocam arraste de areia e redução da quantidade retida.
Para que a partícula que passe sobre a caixa na linha de corrente mais alta atinja a câmara de estocagem de areia, é preciso que percorra H na vertical enquanto percorre L na horizontal:

Costuma-se introduzir um coeficiente de segurança de 1,5 devido ao efeito de turbulência e considerar-se L = 22,5.H ou L = 25 x H.

A NB-570 recomenda que a taxa de escoamento superficial com base na vazão máxima resulte na faixa de (700 a 1300) m3/m2.d.

Controle da velocidade através de calha Parshall.


Para se manter a mesma velocidade na caixa de areia tipo canal com velocidade constante controlada por calha Parshall, para Qmín e Qmáx, tem-se:



Fórmula da calha Parshall:

Q = K.HN, onde

Q = vazão (m3/s)

H = altura de água (m)


Tabela : Valores de K e N


CAPÍTULO III- TRATAMENTO PRIMÁRIO DE ESGOTOS
3. Decantadores de esgotos
3.1. Considerações Iniciais

No tratamento de esgotos, o que ocorre como concentração de fase sólida, removida na forma de lodo. Remover-se sólidos grosseiros no sistema de gradeamento e sólidos facilmente sedimentáveis nas caixas de areia. Nos decantadores primários, sob as condições de escoamento normalmente adotadas em seus projetos, ocorre remoção de 40 a 60% de sólidos em suspensão dos esgotos sanitários, correspondendo a cerca de 30 a 40% da DBO. Até mesmo no tratamento biológico onde se conta com a mineralização dos compostos orgânicos, o efeito preponderante é a floculação da matéria em estado coloidal tornando possível sua remoção por sedimentação nos decantadores secundários.

É típico para o processo de lodos ativados tratando esgotos sanitários em coeficiente de produção celular da ordem de 0,6. Isto indica que de cada 100 kg de DBO removida no processo biológico acarretará uma produção de 60 kg de SSV, ou seja, apenas 40% da matéria orgânica dos esgotos foi de fato mineralizada e a maior parte apenas convertida em flocos.

Desta forma, justifica-se plenamente o emprego de unidades de separação de sólidos, geralmente a base de sedimentação. Quando não são usados decantadores formais de concreto armado, são utilizadas lagoas de decantação ou a sedimentação ocorre no próprio reator biológico. Mais recentemente tem-se estudado o emprego da flotação com ar dissolvido em algumas aplicações, especialmente associada ao tratamento físicoquímico.

No campo do tratamento de esgotos sanitários, a aplicação mais consolidada da flotação com ar dissolvido está no adensamento de excesso de lodos ativados, onde o lodo bem floculado é bastante propício para o aprisionamento de bolhas de ar e são produzidos graus mais elevados de adensamento do lodo do que por gravidade, mesmo sob taxas de aplicação bem mais elevadas.
3.2. Sedimentação no Tratamento de Esgotos
O processo de sedimentação é governado principalmente pela concentração das partículas em suspensão. Quanto mais concentrado for o meio, maior é a resistência à sedimentação. Em suspensões bastante diluídas prevalece a sedimentação do tipo I (individual ou discreta). Neste caso as partículas sedimentam-se individualmente sem ocorrer interrelações, segundo uma velocidade constante ao longo da profundidade do tanque. É o tipo de sedimentação predominante nas caixas de areia. Neste caso, a velocidade de sedimentação pode ser calculada através do equilíbrio de forças atuantes sobre a partícula na direção vertical (força gravitacional, para baixo, e empuxo mais força de atrito, para cima), do qual resulta a lei de Stokes.

Aumentando-se a concentração de sólidos em suspensão, passa a prevalecer a sedimentação do tipo II, também chamada de sedimentação floculante. Neste caso, a maior concentração de partículas permite a formação de emaranhados ou flocos de maior velocidade de sedimentação ao longo de suas trajetórias, fazendo com que a velocidade de sedimentação aumente com a profundidade. É o que tipicamente ocorre nos decantadores das ETAs, também nos decantadores primários de esgotos onde a relativa e elevada concentração de sólidos em suspensão permite tais interações. A partir deste caso, não é mais válida a lei de Stokes, devendo-se proceder ensaios em colunas de sedimentação para a obtenção de parâmetros para o projeto das unidades.

Aumentando-se ainda mais a concentração da suspensão, passa a prevalecer a sedimentação do tipo III (também chamada de sedimentação por zona, retardada ou impedida). Neste caso, a concentração de sólidos é muito elevada e passa a ocorrer dificuldade de saída de água em contra-corrente para possibilitar a sedimentação dos sólidos. Assim, a velocidade de sedimentação diminui ao longo da profundidade do decantador, sendo bastante baixa no fundo onde a concentração de sólidos é muito elevada. Este tipo de sedimentação predomina em decantadores secundários de processo

de lodos ativados, que é alimentado pelo lodo concentrado do tanque de aeração. Neste

caso é nítida a ocorrência de interface lodo/líquido sobrenadante. Quando o lodo é colocado em proveta, o deslocamento desta interface pode ser cronometrado ao longo do tempo e através de interpretação gráfica pode-se calcular a velocidade de sedimentação por zona (VSZ) importante para a interpretação da condição operacional de um processo de lodos ativados. O resultado final, após 30 minutos de sedimentação, é utilizado para o cálculo do IVL.

A sedimentação do tipo IV, também chamada de sedimentação por compressão, ocorre no fundo dos decantadores secundários e nos adensadores de lodo. Neste caso, a suspensão é tão concentrada que a "sedimentação" dá-se pelo peso de uma partícula sobre a outra, provocando a liberação de água intersticial.


3.3. Tipos de Decantadores
Existem, basicamente, dois tipos de decantadores de esgotos: os de secção retangular em planta e de escoamento longitudinal, e os de secção circular, que mais comumente são alimentados pelo centro e a coleta do esgoto decantado é feita nas bordas dos decantadores, ao longo da linha da circunferência. Existem também os decantadores circulares de alimentação periférica.

Alguns autores preconizam que como decantadores primários devem ser ser utilizados preferivelmente os de secção retangular, melhores para a assimilação das variações de vazão de esgotos e, como decantadores secundários podem ser utilizados os de secção circular, pois nesta situação a variação de vazão de alimentação são menores e os decantadores circulares são de implantação mais barata. Por isso, pode-se também empregar decantadores circulares como primários, atribuindo-lhe menor eficiência na remoção de DBO. Deverá ser feita análise econômica para subsidiar a escolha do tipo de decantador a ser empregado em uma ETE. Os removedores mecanizados de lodo e a estrutura em concreto armado são os principais componentes de custo. Os raspadores mecanizados são equipamentos de custo elevado, tanto os rotativos dos decantadores circulares como especialmente os que são movidos por pontes rolantes que tansladam ao longo do comprimento do decantador. Os decantadores de secção circular são também favorecidos com relação aos custos da estrutura em concreto armado.

Os decantadores retangulares possuem o fundo ligeiramente inclinado para que o lodo raspado seja direcionado ao poço de lodo, posicionado no início do decantador, de onde é removido através de bombeamento ou pressão hidrostática. No trecho final do decantador estão posicionadas, à superfície, as canaletas de coleta do esgoto decantado cujas funções são as de reduzir a velocidade dos esgotos na região de saída evitando-se a ressuspensão de lodo. Nestes decantadores pode ser observada também uma tubulação transversal de coleta de escuma superficial identificada por Skimmer. As comportas de distribuição dos esgotos no canal de entrada do decantador, têm a função de evitar escoamento preferenciais.

Para o tratamento de alguns efluentes industriais são necessários removedores de lodo através de aspiração. Este processo mais sofisticado se justifica quando os sólidos sedimentados são tão leves que podem ser ressuspensos pela ação dos raspadores.

Nas estações de pequeno porte pode-se optar pelo emprego de decantadores sem raspador mecânico de lodo, derivados dos chamados decantadores Dortmund. O decantador Dortmund é de secção circular em planta mas com o fundo em tronco de cone invertido com paredes bem inclinadas, permitindo que todo o lodo convirja para um único "poço de lodo" de onde o lodo sedimentado pode ser removido por pressão hidrostática.

São posicionados anteparos na região de entrada dos esgotos para direcionar o fluxo de sólidos para baixo e na região de saída para a retenção de escuma. Uma tubulação com derivação horizontal é posicionada para a remoção do lodo sedimentado por pressão hidrostática. Podem também ser utilizados os decantadores desprovidos de remoção mecanizada de lodo de secção quadrada em planta, de fundo com o formato de tronco de pirâmide invertida. Destes, derivaram os de seção retangular em planta com fundos múltiplos tronco-piramidais.

Estes decantadores são baratos para serem implantados por não possuirem os removedores mecanizados de lodo, o que também dispensa a manutenção de equipamento eletro-mecânica. Consomem mais concreto armado para a construção dos fundos múltiplos e são mais profundos, o que aumenta os problemas de escavação. Este

fato tem restringido o emprego deste tipo de decantador em apenas pequenos sistemas, inclusive com dimensões limitadas pela NB-570.


3.4. Parâmetros para o Dimensionamento de Decantadores Primários de Esgotos
De acordo com a NB-570, os decantadores primários devem ser dimensionados com base na vazão máxima horária de esgotos sanitários e para vazões de dimensionamento superiores a 250 L/s deve-se empregar mais de um decantador. Para a determinação da área de decantação deve-se utilizar como parâmetro a taxa de escoamento superficial. Na literatura internacional são recomendadas taxas na faixa de 30 a 60 m3/m2.dia

A NB-570 impõe três condições para a adoção da taxa de escoamento superficial para decantadores primários de esgotos:

a) até 60 m3/m2.dia, só tratamento primário

b) até 80 m3/m2.dia, seguido de filtros biológicos

c) até 120 m3/m2.dia, seguido de lodos ativados

Costuma-se adotar taxa da ordem de 60m3/m2.dia para decantadores primários de sistemas de filtros biológicos e de até 90m3/m2.dia em sistemas de lodos ativados. O tempo de detenção hidráulico situa-se entre 1,5 e 3,0 horas, de acordo com a literatura internacional sobre decantadores primários. A NB-570 recomenda tempo de detenção superior a 1,0 hora, com base na vazão máxima de esgotos e inferior a 6,0 horas, com base na vazão média.

Determina-se a área de decantação através da taxa de escoamento superficial e o volume do decantador através do tempo de detenção. Obtendo-se área e volume, pode-se obter a profundidade útil dos decantadores. Para decantadores retangulares a relação comprimento largura deve ser superior a 2:1, sendo típicos valores na faixa de 3:1 a 4:1, ou mais.

As profundidades dos decantadores variam de 2,0 a 4,5 m, sendo mais comuns na faixa de 3,0 a 4,0 m. A NB-570 impõe que os decantadores devem possuir profundidade superior a 2,0 m. Um parâmetro importante a ser observado no dimensionamento de decantadores é a taxa de escoamento nos vertedores de saída. A NB-570 recomenda valores inferiores a 720m3/m2.dia, mas na prática são usados valores bem inferiores, principalmente quando são usados decantadores de seção circular.



No caso de decantadores retangulares, deve-se manter o comprimento de canaletas vertedoras compatível com a taxa de escoamento, sem que as mesmas avancem além de 1/4 do comprimento do decantador.




©principo.org 2016
enviar mensagem

    Página principal