O carbono pirogênico



Baixar 218.01 Kb.
Página9/9
Encontro19.07.2016
Tamanho218.01 Kb.
1   2   3   4   5   6   7   8   9

CONSIDERAÇÕES FINAIS

O carbono pirogênico está presente em diversos ambientes e apresenta diversas propriedades de extremo interesse ambiental e agronômico. Exemplos dessas propriedades são: (a) sua alta estabilidade, devido à presença de estruturas aromáticas condensadas, o que desempenha importante papel no seqüestro de carbono; (b) sua elevada reatividade, decorrente da oxidação parcial de sua estrutura aromática, dando origem a grupos funcionais ácidos e recalcitrantes, principalmente carboxílicos, que contribuem significativamente para o aumento da capacidade de troca catiônica, especialmente nos solos altamente intemperizados, normalmente constituídos por minerais de baixa atividade, tais como caulinitas, goetita e gibsita e (c) sua elevada porosidade e área superficial, o que serve de refúgio para microorganismos, tais como micorrizas, que produzem mucopolissacarídeos importantes para a agregação dos solos e que, em associação com o sistema radicular das plantas, podem aumentar a capacidade de absorção destas.


O melhor conhecimento dessas propriedades, assim como a tentativa de elucidar a tecnologia ancestral empregada para a formação de certos solos antropogênicos, em especial as Terras Pretas de Índio, em muito contribuirá para o desenvolvimento de novas tecnologias visando a resolver ou, ao menos, mitigar problemas atuais, tais como a emissão de gases e a procura por práticas de agricultura sustentável.

REFERÊNCIAS

AHN, P.M. Some observations on basic and applied research in shifting cultivation. FAO Soils Bull. v.24, p.123-154, 1974.


ALEMANY, L. B.; GRANT, D. M.; PUGMIRE, R. J.; ALGER, T. D.; ZILM, K. W. Cross polarization and magic angle spinning NMR spectra of model organic compounds. 2. Molecules of low or remote protonation. Journal of the American Chemical Society, Washington, v. 105, p. 2142-2147, 1983.
ALMENDROS, G.; GONZÁLEZ-VILA, F. J.; MARTIN, F.; FRÜND, R.; LÜDEMANN, H. D. Solid state NMR studies of fire-induced changes in the structure of humic substances. Science of the Total Environment, Amsterdam, v. 117/118, p. 63-74, 1992.
ALMENDROS, G.; KNICKER, H.; GONZÁLEZ-VILA, F. J. Rearrangement of carbon and nitrogen forms in peat after progressive isothermal heating as determined by soli-state 13C nd 15N NMR spectroscopies. Organic. Geochemistry, Elmsford, v. 34, p. 1559-1568, 2003.
ALMENDROS, G.; LEAL, J. A. An evaluation of some oxidative degradation methods of humic substances applied to carbohydrate-derived humic-like polymers. Journal of Soil Science, Oxford, v. 41, n. 1, p. 51-59, 1990.
ALMENDROS, G.; MARTIN, F.; GONZÁLES-VILA, F. J. Effects of fire on humic and lipid fractions in a Dystric Xerochrept in Spain. Geoderma, Amsterdam, v. 42, p. 115-127, 1988.
ALMENDROS, G.; POLO, A.; LOBO, M. C.; IBÁÑEZ, J. J. Contribución al studio de la influencia de los incendios forestales in las caracteristics de la materia orgánica del suelo. ll. transformaciones del humus por ignición en condiciones controladas de laboratorio. Revue d`Écologie et de Biologie du Sol, Paris, v. 21, p. 154-160, 1984.
ANDRIESSE, J.P. & KOOPMANS, T. A monitoring study on nutrient cycles in soils used for shifting cultivation under various climatic conditions in tropical Ásia. I. The influence of simulated burning on form and availability of plant nutrients. Agric. Ecosyst. Environ. V.12, p.1-16, 1984.
ANDRIESSE, J.P. Monitoring project of nutrient cycling in soils used for shifting cultivation under various climatic conditions in Asia. Part I, Text. Research Report, Royal Tropical Institute, Amsterdam, 141p., 1987.
BALDOCK, J. A.; SMERNIK, R. J. Chemical composition and bioavailability of thermally altered Pinus resinosa (Red pine) wood. Organic Geochemistry, Almsford, v. 33, n. 1, p. 93-109, 2002.
Barancíková, G.; Senesi, N.; Brunetti, G. Chemical and spectroscopic characterization of humic acids isolated from different Slovak soil types. Geoderma, Amsterdam, v.78, p. 251-266, 1997.
BENITES, V.M.; MENDONÇA, E.S.; SCHAEFER, C.E.G.R.; NOVOTNY, E.H.; REIS, E.L. & KER, J.C. Properties of black soil humic acids from high altitude rocky complexes in Brazil. Geoderma, v.127, p.104-113, 2005.
BIRD, I.; GRÖCKE, D. R. Determinatio of the abundance and carbon isotope composition of elemental carbon in sediments. Geochimica et Cosmochimica Acta, Oxford, v. 61, p. 3413-3423, 1997.
BIRD, M. I.; MOYO, C.; VEENENDAL, E. M.; LlOYD, J.; FROST, P. Stability of elemental carbon in savanna soil. Global Biogeochemistry Cycles, Washington, v. 13, p. 923-932, 1999.
BOULET, R.; PESSENDA, L. C. R.; TELLES, E. C. C.; MELFI, A. J. Une evaluation de la vitesse d`accumulation superficielle de matière par la faune du sol à partir de la datation des charbons et de l`humane du sol. Exemple des latosol des versants du lac Campestre, Slitre, Minas Gerais, Brésil. Paris: C.R. Academic Science. 320 série lla: p. 278-294, 1995.
CHEN, Z.; PAWLUK, S. Structural variations of humic acids in two sola of Alberta Mollisols. Geoderma, Amsterdam, v. 65, p.173-193, 1995.
CHRISTANTY, L. Shifting cultivation and tropical soils: patterns, problems, and possible improvements. In: MARTEN, G.G. (Editor), Traditional Agriculture in Southeast Asia. Westview Press, Boulder, CO, p. 226-240, 1986.
COPE, M. J.; CHALONER, W. G. Fossil charcoal as evidence of past atmospheric composition. Nature, London, v. 283, p. 647-649, 1980.
CRUTZEN, P. J.; ANDREAE, M. O. Biomass burning in the tropics: impact on atmospheric chemistry and biogeochemical cycles. Science, Washington, v. 250, p. 1669-1678, 1990.
CUNHA, T.J.F. Ácidos húmicos de solos escuros da Amazônia: Terra Preta de Índio. 2005. Tese (Doutorado) – Universidade Federal Rural do Rio de Janeiro, 2005. 118p.
CZIMCZIK, C. I.; PRESTON, C. M.; SCHMIDT, M. W. I.; SCHULZE, E. D. How surface fire in Siberian Scots pine forest affects soil organic carbon in the forest floor: stocks, molecular structure, and conversion to black carbon (charcoal). Global Biogeochemical Cycles, Washington, v. 17, n. 20, p. 1-14, 2003.
CZIMCZIK, C. I.; PRESTON, C.; SCHMIDT, M. W. I.; WERNER, R. A.; SCHULZE, E. D. Effects of charring on mass, organic carbon, and stable carbon isotope composition of wood. Organic Geochemistry, Elmsford, v. 33, p. 1207-1223, 2002.
DERENNE, S.; LERGEAU, C. A review of some important families of refractory macromolecules: composition, origin, and fate in soil and sediments. Soil Science, Baltimore, v. 116, n. 11, p. 833-847, 2001.
DRIESSEN, P.M.; BUURMAN, P. & PERMADHY. The influence of shifting cultivation on a “podzolic” soil from Central Kalimantan. In: Peat and Podzolic Soils and their Potencial for Agriculture in Indonesia. Soil Research Institute, Bogor. P. 95-115, 1976.
DRUFFEL, E.R.M. Comments on the importance of black carbon in the global carbon cycle. Mar. Chem., v.92, p.197-200, 2004.
ELIAS, V.O. Evaluating Levoglucan as an indicator of biomass burning in Carajas, Amazonia: a comparison to the charcoal record. Geochim. Cosmochim. Acta, v. 65, p.267- 272, 2001.
FEARNSIDE, P. M. Global warming and tropical land-use change: greenhouse gas emissions from biomass burning, decomposition and soils in forest conversion, shifting cultivation and secondary vegetation. Climatic Change, Dordrecht, v. 46, n. 1/2,p. 115-158, 2000.
FEARNSIDE, P. M.; GRAÇA, P. M. L. A.; LEAL FILHO, N.; RODRIGUES, F. J. A.; ROBINSON, J. M. Tropical forest burnig in Brazilian Amazonia: measurements of biomass loading, burning efficiency and charcoal formation at Altamira, Pará. Forest Ecololy Manegement, Amsterdam, v. 123, p. 65-79, 1999.
FEARNSIDE, P. M.; GRAÇA, P. M. L. de A.; RODRIGUES, F. J. A. Burning of Amazonian rainforests: burning efficiency and charcoal formation in forest cleared for catte pasture near Manaus, Brazil. Forest Ecology and Management, Amsterdam, v. 146, p. 115-128, 2001.
FEARNSIDE, P. M.; LEAL FILHO, N.; FERNANDES, F. M. Rainforest burning and the global carbon budget: biomass combustion efficiency and charcoal formation in the Brazilian Amazon. Journal of Geophysics Research Atmospheres, v. 98, n. D9, p. 16733-16743, 1993.
FÖLSTER, H. Nutrient loss during forest clearing. In: LAL, R.; SANCHEZ, P.A. & CUMMINGS Jr., R.W.(Editors), Land Clearing and Development in the Tropics. A.A. Balkema, Rotterdam, p. 241-256, 1986.
GLASER, B.; GUGGENBERGER, G.; HAUMAIER, L.; ZECH, W. Persistence of soil organic matter in archaeological soils (Terra Preta) of the Braziian Amazon region. In: REES R. et al. (Ed). Sustainable management of soil organic matter. Wallingford: CAB International, 2000. p. 190-194.
GLASER, B.; HAUMAIER, L.; GUGGENBERGER, G.; ZECH, W. Black carbon in soils: the use of benzenecarboxylic acids as apecific markers. Organic Geochemistry, Elmsford, v. 29, p. 811-819, 1998.
GLASER, B.; HAUMAIER, L.; GUGGENBERGER, G.; ZECH, W. The “Terra Preta” phenomenon: a model for sustainable agriculture in the humic tropics. Naturwissenschafter, v. 88, p. 37-41, 2001.
GLASER, B.; LEHMANN, J.; ZECH, W. Ameliorating physical and chemical properties of highly weathered soil in the tropics with charcoal – a review. Biology and Fertility of Soils, Berlin, v. 35, p. 219-230, 2002.
GLASER. B. & AMELUNG. W. Pyrogenic carbon in native grassland soils along a climosequence in North America. Global Biogeochem. Cy., v. 17, p.1064, 2003.
GOLCHIN, A.; CLARKE, P.; BALDOCK, J. A.; HIGASHI, T.; SKJEMSTAD, J. O. ; OADES, J. M. The effects of vegetation and burning on the chemical composition of soil organic matter of a volcanic ash soil as shown by 13C NMR spectroscopy. I. Whole soil and humic acid fraction. Geoderma, Amsterdam, v. 76, p. 155-174, 1997.
GOLDBERG, E. D. Black carbon in the environment: properties and distribution. Jonh Wiley & Sons, New York, 1985.
GONZÁLES-PÉREZ, J. A.; GONZÁLES-VILA, F. J.; ALMENDROS, G.; KNICKER, H. The effect of fire on soil organic matter – a review. Environment International, Elmsford, v. 30, p. 855-870, 2004.
GONZÁLES-PÉREZ, J. A.; GONZÁLES-VILA, F. J.; POLVILLO, O.; ALMENDROS, G.; KNICKER, H.; SALAS, F.; COSTA, J. C. Wildfire and black carbon in Andalusian Mediterranean forest. In: VIEGAS D. X.(Ed.). Forest fire research and wildland fire safety. Rotterdam: Millpress, 2002. 1 CD-ROM.
GONZÁLES-VILA, F. J.; GONZÁLES-PÉREZ, J. A.; POLVILLO, O.; ALMENDROS, G.; KNICKER, H. Nature of refractory forms of organic carbon in soils affected by fires. Pyrolytic and spectroscopic approaches. In: VIEGAS, D.X. (Ed.). Forest fire research and wildland fire safety. Rotterdam: Millpress, 2002.
GRAÇA, P. M. L. A.; FEARNSIDE, P. M.; CERRI, C. C. Burning of Amazonian forest in Ariquemes, Rondônia, Brazil: biomass, charcoal formation and burning efficiency. Forest Ecology Management, Amsterdam, v. 120, p. 179-191, 1999.
GRIFFIN, J. J.; GOLDBERG, E. D. The fluxes of elemental carbon in coastal marine sediments, Limnology and Oceanography, Seattle, v. 20, p. 456-463, 1975.
GRIFFIN, J.J. & GOLDBERG, E.D. Morphologies and origin of elemental carbon in the environment. Science, v. 206, p.563-565, 1979.
GUSTAFSSON, O.; BUCHELI, T. D.; KUKULSKA, Z.; ANDERSON, M.; LARGEAU, C.; ROUZAUD, J. N.; REDDY, C. M.; EGLINTON, T. I. Evaluation of a protocol for the quantification of black carbon in sediments. Global Biogeochemical Cycles, Washington, v. 15, p. 881-890, 2002.
GUSTALSSON, O.; GSCHWEND, P. M. The flux of black carbon to surface sediments on the New England continental shelf. Geochimica et Cosmochimica Acta, Oxford, v. 62, p. 465-472, 1998.
HATCHER, P.G.; SCHNITZER, M.; DENNIS, L.W. & MACIEL, G.E. Aromaticity of humic substances in soils. Soil Science Society of America Journal, Madison, v. 45, p.1089-1094, 1981.
HAUMAIER, L.; ZECH, W. Black carbon – possible source of highly aromatic compenents of soil humic acids. Organic Geochemistry, Elmsford, v. 23, p. 191-196, 1995.
HEDGES, J. I.; OADES, J. M. Comparative organic geochemistries of soils and marine sediment. Organic Geochemistry, Elmsford, v. 27, p. 319-361, 1997.
JONES, T.P. & ROWE, N.P. The earliest known occurrences of charcoal in the fossil record. 9th Annual V.M. Goldschmidt Conference, Houston, USA. Harvard University, Cambridge, USA.: Lunar and Planetary Institute, p. 143, 1999.
KLEINMAN, P.J.A.; PIMENTEL, D. & BRYANT, R.B. The ecological sustainability of slash-and-burn agriculture. Agric. Ecosyst. Environ. V. 52, p.235-249, 1995.
KNICKER, H.; ALMENDROS, G.; GONZÁLES-VILLA, F. J.; MARTIN, F.; LUDERMANN, H. D. 13C AND 15N NMR spectroscopic examonation of the transformation of organic nitrogen in plant biomasa buring termal treatment. Soil Biology and Biochemistry, Oxford, v. 28, p. 1053-1060, 1996.
KONONOVA, M.M. Matéria orgânica del suelo: su naturaleza, propriedades y métodos de investigación. Barcelona, Oikos-Tou. 1982. 365p.
KRAMER, R.W.; KUJAWINSKI, E.B. & HATCHER, P.G. Identification of black carbon derived structures in a volcanic ash soil humic acid by fourier transform ion cyclotron resonance mass spectrometry. Environ Sci Tech, v. 38, p.3387-3395, 2004.
KUHLBUSCH, T. A. J. Black carbon and global carbon and oxygen cicle. Ninth Annual V. M. Goldschmidt Conference, p. 7360. pdf, 1999.
KUHLBUSCH, T. A. J. Black carbon and the carbon cycle. Science, Washington, v. 280, n. 1903-1904, 1998.
KUHLBUSCH, T. A. J.; ANDREAE, M. O.; CACHIER, H.; GOLDAMMER, J. G. LACAUX, J. P.; SHEA, R.; CRUTZEN, P. J. Black carbon formation by savanna fires: measurements and implications for the global carbon cycle. Journal of Geophysical Research, v. 101, n. 23, p. 651-657, 1996.
KUHLBUSCH, T. A. J.; CRUTZEN, P. J. Toward a global estimate of black carbon in residues of vegetation fires representing a sink of atmospheric CO2 and a source of O2. Global Biogeochemical Cycles, Washington, v. 9, p. 491-501, 1995.
KUMADA, K. Carbonaceous materials as a possible source of soil humus. Soil Science and Plant Nutrition, Tokyo, v. 29, p. 383-386, 1983.
MADARI, B.E.; SOMBROEK, W.G. & WOODS, W.I. Research on Anthropogenic Dark Earth soils. Could it be a solution for sustainable agricultural development in the Amazon? In: GLASER, B. & WOODS, W.I. (Eds). Amazonian dark Earths: Explorations in Space and Time. Springer-Verlag, Heidelberg. pp 169-182, 2004.
MALCOLM, R. L. Applications of solid-state 13C NMR spectroscopy to geochemical studies of humic susbstances. In: HAYES, M.H.B. et al. (Ed.). Humic substances II. In search of structure. New York: John Wiley & Sons, 1989. p. 309-372.
MALINGREAU, J.P.; STEPHENS, G & FELLOWS, L. Remote-sensing of forest-fires – Kalimantan and North-Borneo in 1982-83. Ambio, v.14, p.314-321, 1985.
MASIELLO, C.A. New directions in black carbon organic geochemistry. Mar. Chem.,v. 202, p.201-213, 2004.
MASIELLO, C. A.; DRUFFEL, E. R. M. Black carbon in deep-sea sediments. Science, Washington, v. 280, p. 1911-1913, 1998.
NOVAKOV, T. The role of soot and primary oxidants in atmospheric science. Science of the Total Environment, Amsterdam, v. 36, p. 1-10, 1984.
NOVOTNY, E. H. Estudos espectroscopicos e cromatográficos de substâncias húmicas de solos sob diferentes sistemas de preparo. 2002. 251 f. Tese (Doutorado)-Universidade de São Paulo; Instituto de Química, São Paulo.
NOVOTNY, E.H.; deAZEVEDO, E.R.; BONAGAMBA, T.J.; CUNHA, T.J.; MADARI, B.E.; BENITES, V.M. & HAYES, M.H.B. Studies of the Compositions of Humic Acids from Amazonian Dark Earth Soils. Environ. Sci. Tech. (in press), 2006a.
NOVOTNY, E.H.; HAYES, M.H.B.; deAZEVEDO, E.R.; BONAGAMBA,T. J.; BENITES, V.M.; MADARI, B.E.; CUNHA, T.J.F. Caracterização do carbono pirogênico por ressonância magnética nuclear. VI Encontro Brasileiro de Substâncias Húmicas, Rio de Janeiro, 2005. p. 28-31. Resumos expandidos, 2005.
NOVOTNY, E.H.; HAYES, M.H.B.; deAZEVEDO, E.R. & BONAGAMBA, T.J. Characterisation of Black Carbon rich samples by 13C solid-state nuclear magnetic resonance. Naturwissenschaften, v. 93, p. 447-450, 2006b.
NYE, P.H. & GREENLAND, D.J. The soil under Shifting Cultivation. Technical Communication 51, Commonwealth Bureau of Soil, Harpenden, UK, 156p, 1960.
OADES, J. M.; GILLMAN, G. P.; UEHARA, G. Interactions of soil organic matter and variable-charge clays. In: COLEMAN, D. C.; OADES, J. M.; UEHARA, G. (Ed.) Dynamics of soil organic matter in tropical ecosystems. Honolulu: University of Hawaii, 1989. p. 69-95.
OBERLIN, A.; BOULMIER, J. L.; VILEY, M. Electron microscopic study of kerogen microstructure. Selected criteria for determining the evolution path and evolution stage of kerogen. In: DURAND, B. (Ed.). Kerogen: insoluble organic matter from sedimentary rocks. Pariz: Techip, 1980. p.191-241.
OHTA, S.; SUZUKI, A. & KUMADA, K. Experimental studies on the behavior of fine organic particles and water-soluble organic matter in mineral soil horizons. Soil Sci. Plant Nutr, v. 32, p.15-26, 1986.
PARFITT, R.L.; THENG, B. K. G.; WHITTON, J. S.; SHEPHERD, T. G. Effects of clay minerals and land use on organic matter pools. Geoderma, Amsterdam, v. 75, n. 1/2, p. 1-12, 1997.
Pérez, M. G.; MARTIN-NETO, L.; SAAB, S.C.; NOVOTNY, E. H.; MILORO, D. M. B. P.; BAGNATO, V. S.; Colnago, L. A.; MELO, W. J.; KNICKER, H. Characterization of humic acids from a Brazilian Oxisol under different tillage systems by EPR, 13C NMR, FTIR and fluorescence spectroscopy, Geoderma, Amsterdam, v. 118, p.181-190, 2004.
PICCOLO, A.; PIETRAMELLARA, G. & MBAGWU, J.S.C. Effects of coal-derived humic substances on water retention and structural stability of Mediterranean soils. Soil Use Manege., v.12, p.209-213, 1996.
POIRIER, N.; DERENNE, S.; ROUZAUD, J. N.; LAGEAU, C.; MARIOTTI, A.; BALESDENT, J.; MAQUET, J. Chemical structure and source of the macromolecular, resistant, organic fraction isolated from a forest soil (Lacadee, Southwest France). Organic Geochemistry, Elmsford, v. 31, p. 813-827, 2000.
POIRIER, N.; DRENNE, S.; BALEDENT, J.; ROUZAUD, J. N.; MARIOTTI, A.; LARGEAU, C. Abundance and composition of the refractory organic fraction of an ancient, tropical soil (Pointe Noire Congo). Organic Geochemistry, Elmsford, v. 33, p. 383-391, 2002.
PONOMARENKO, E.V. & ANDERSON, D.W. Importance of charred organic matter in black chernozem soils of Saskatchewan. Can. J. Soil Sci., v. 81, p.285-297, 2001.
RAMAKRISHNAN, P.S. Shifting Agriculture and Sustainable Development. Man and Biosphere Series, vol 10. UNESCO, Pariz, 424 p., 1992.
ROSCOE, R.; BUURMAN, P.; VELTHORST, E.J. & VASCONCELLOS, C.A. Soil organic matter dynamics in density and particle size fractions as revealed by the 13C/12C isotopic ratio in a Cerrado's oxisol. Geoderma, v. 104, p.185-202, 2001.
SALDARRIAGA, J. G.; WEST, D. C. Holocene fires in the nortern Amazon basin. Quaternary Research, San Diego, v. 26, p. 358-366, 1986.
SANCHEZ, P.A.; VILLACHIA, J.H. & BANDY, D.E. Soil fertility dynamics after clearing tropical rainforest in Peru. Soil Sci. Soc. Am. J., v. 47, p.1171-1178, 1983.
SCHMIDT, M. W. I.; NOACK, A. G. Black carbon in soils and sediments: analysis, distribution, implications, and current challenges (review). Global Biogeochemical Cycles, Washington, v. 14, p. 77-79, 2000.
SCHMIDT, M. W. I.; SKJEMSTAD, J. O.; CZIMCZINK, C. I.; GLASER, B.; PRENTICE, K. M.; GELINAS, Y.; KULBEUSCH, T. A. Comparative analysis of black carbon in soil. Global Biogeochemical Cycles, Washington, v. 15, p. 163-167, 2001.
SCHMIDT, M. W. J.; SKJEMSTAD, E. GEHRT, E.; KÖEL-KNABNER, I. Charred organic carbon in German chernozemic soils. European Journal of Soil Science, Oxford, v. 50, p. 351-365, 1999.
SCHMIDT, M.W.I.; KNICKER, H.; HATCHER, P.G. & KÖGEL-KNABNER, I. Impact of brown coal dust on the organic matter in particle-size fractions of a Mollisol. Org. Geochem. v. 25, p.29-39, 1996.
SCHNITZER, M. & KHAN, S.U. Soil Organic Matter. Amsterdam, Elsevier, 1978.
SCHULTEN, H.-R. & SCHNITZER, M. A state of the art structural concept for humic substances. Naturwissenschaften, v. 80, p. 29-30, 1993.
SCHULZE, E. D.; WIRTH, C.; HEIMANN, M. Maneging forests after Kyoto. Science, Washington, v. 289, p. 2058-2059, 2000.
SEIBERT, S.F. Hillside farming, soil erosion, and forest conservation in two Southeast Asian national parks. Mt. Res. Dev., v. 10, p.64-72, 1990.
SEILER, W.; CRUTZEN, P. J. Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning. Climatic Change, Dordrecht, v. 2, p. 207-247, 1980.
SHINDO, H.; MATSUI, Y.; HIGASHI, T. A possible source of humic acid in volcanic ash soils in Japan-charred residue of Miscanthus sinensis. Soil Science, Baltimore, v. 141, p. 84-87, 1986b.
SHINDO, H.; MATSUI, Y.; HIGASHI, T. Humus composition of charred plant residues. Soil Science and Plant Nutrition, Tokyo, v. 32, p. 475-478, 1986a.
SHNEOUR, E. A. Oxidation of graphitic carbon in certain soils. Science, Washington, v. 151, p. 991-992, 1966.
SIMPSON, M. J.; CHEFETZ, B.; DESHMUKH, A. P.; HATCHER, P. G. Comparison of polycyclic aromatic hydrocabon distribution and sedimentary organic matter characteristics in contaminated, coastal sediments from Pensacola Bay. Marine Environmental Research, Florida, v. 59, p. 139-163 2004.
SIMPSON, M. J.; HATCHER, P. G. Determination of black carbon in natural organic matter by chemical oxidation and solid-state 13C nuclear magnetic resonance spectroscopy. Organic Geochemistry, Elmsford, v. 35, p. 923-935, 2004a.
SIMPSON, M.J. & HATCHER, P.G. Overestimates of black carbon in soils and sediments. Naturwissenschaften, v. 91, p.436-440, 2004b.
SKJEMSTAD, J. O.; CLARKE, P.; TAYLOR, J. A.; OADES, J. A.; McCLURE, S. G. The chemistry and nature of protected carbon in soil. Australian Journal of Soil Research, Victoria, v. 34, p. 251-271, 1996.
SKJEMSTAD, J. O.; GRAETZ, R. D. The impact of burning on the nature of soil organic matter in Australia. Agronomina, v. 37, n. 2, p. 85-90, 2003.
SKJEMSTAD, J. O.; REICOSKY, D. C.; WILTS, A. R.; McGOWAN, J. A. Charcoal carbon in US Agricultural Soil. Soil Science Society of the America Journal, Madison, v. 66, p. 1249-1255, 2002.
SKJEMSTAD, J. O.; TAYLOR, J. A.; SMERNIK, R. J. Estimation of charcoal (char) in soil. Communications in Soil Science Society of Amarica Journal, Madison, v. 66, p. 2283-2298, 1999.
SMERNIK, R. J.; SKJEMSTAD, J. O.; OADES, J. M. Virtual fractionation of charcoal from soil organic matter using solid state 13C NMR spectral editing. Australian Journal of Soil Research, Victoria, v. 38, p. 665-683, 2000.
SMITH, D. M.; CHUGHTAI, A. R. The surface-structure and reactivity of black carbon. Colloids and Surfaces, Amsterdam, v. 105, p. 47-77, 1995.
SOMBROEK, W. G. Amazonas soils. A reconnaissance of the soils lf the Brazilian Amazon region. Wageningen: Centre for Agricultural Publication and Documentation, 1966. 292 p.
SOMBROEK, W.; RUIVO, M. de L.; FEARNSIDE, P. M.; GLASER, B.; LEHMANN, J. Amazonia dark earths as carbon stores and sinks. In: LEHMANN, J. et al. (Ed). Amazonian dark earths. Dordrecht: Kluwer Academic Publishers, 2003. p. 124-139.
SPOSITO, G. The Chemistry of Soils. New York, Oxford University, 1989.
SPURR, H. S.; BARNES, B. V. Forest ecology. 2nd ed. New York: The Ronald Press Company, 1973. p. 347.
STEVENSON, F. J. Humus chemistry: genesis, composition, reactions. 2nd ed. New York: J. Wiley, 1994. 443 p.
STOUT, J.D.; GOH, K.M. & RAFTER, T.A. Chemistry and turnover of naturally occurring resistant organic compounds in soil. In: Paul, E.A. & Ladd, J.N. (Eds.). Soil Biochemistry. Marcel Dekker, New York. v.5, p. 1-73, 1995.
TAMM, C.O. Nitrogen in terrestrial ecosystems. Springer, Berlin Heidelberg New York, 1991.
TATE, K. R.; YAMAMOTO, K.; CHURCHMAN, G. J.; MEINHOLD, R.; NEWMAN, R. H. Relationships between the type and carbon chemistry of humic acids from some New Zealand and Japanese soils. Soil Science and Plant Nutrition, Tokyo, v. 36, p. 611-621, 1990.
THINON, M. Phytoécologie-la pédoanthracologie: une nouvelle méthode d`analyse phytochronologique depuis de néolithique. Comptes Rendus de l`Académie des Sciences série D, Paris, p. 1203-1206, 1978.
UHL, C.; CLARK, K.; CLARK, H. & MURPHY, P. Early plant succession after cutting and burning in the Upper Rio Negro of the Amazon Basin. J. Ecol., v. 69, p.631-649, 1981.
USSIRI, D.A.N.; JOHNSON, C. E. Characterization of organic matter in a northern hardwood forest soil by 13C NMR spectroscopy and chemical methods. Geoderma, Amsterdam, v. 111, p.123-149, 2003.
VAN WANBEKE, A. Soils of the Tropic: Properties and Appraisal, McGraw-Hill, New York, 343p., 1992.
VERADO, D. J. Charcoal analysis in marine sediments. Limnology and Oceanography, New York, v. 42, p. 192-197, 1997.
WARDLE, D.A.; ZACKRISSON, O. & NILSSON, M.C. The charcoal effect in Boreal forests: mechanisms and ecological consequences. Oecologia. v. 115, p.419-426, 1998.
WOLBACH, W. S.; LEWIS, R. S.; ANDERS, E. Cretaceous extinctions: evidence for wildfires and search for meteoritic material. Science, Washington, v. 230, p. 167-170, Oct. 1985.
WOLBACH, W.S. & ANDERS, E. Elemental carbon in sediments: determination and isotopic analysis in the presence of kerogen. Geochim. Cosmochim. Acta, v. 53, p.1637–1647, 1989.
ZECH, W.; GUGGENBERGER, G. Organic matter dynamics in forest soils of temperate and tropical ecosystems. In: PICCOLO, A. (Ed.). Humic substances in terrestrial ecosystems, Amsterdam: Elsevier Science,1996. p. 101-170.
ZECH, W; HAUMAIER, L, & HEMPFLING, R. Ecological aspects of soil organic matter in tropical land use. In: McCARTHY, P.; CLAPP, C.E.; MALCOLM, R.L. & BLOOM, P.R. (eds). Humic substances in soil and crop sciences: Selected Readings. Madison, ASA/SSSA. Humic substances in soil and crop science, selected readings, p.187-201, 1990.


Fig. 1. Esquema mostrando a dinâmica da matéria orgânica dos solos quando afetada por queimadas severas. Adaptado de Almendros &Leal (1990).


Fig. 2. Formação de black carbon (carbono pirogênico) em função da volatilização do carbono. Adaptado de Kuhlbusch et al. (1996).


Fig 3. Transformação progressiva de ácidos húmicos e ácidos fúlvicos em função do aumento da temperatura em condições controladas de laboratório. Os dados são expressos como percentagem do peso final. Adaptado de Almendros & Leal (1990).


Fig. 4. Mudança nos diferentes tipos de carbono detectado por 13C RMN de ácidos húmicos como resultado do aquecimento. As percentagens dos diferentes tipos de carbono foram calculadas em termos de perdas de carbono sob condições de laboratório. Adaptado de Gonzáles-Pérez et al. (2004).

Fig. 5. Unidades estruturais básicas e as duas estruturas principais do carbono pirogênico: a) carbono pirogênico formado em laboratório, b) unidades estruturais básicas de três ou quatro camadas, c) unidades estruturais básicas consistindo de algumas camadas grafíticas, e d) partículas do tipo “cebola” e camadas condensadas. Fonte: adaptado de Schmidt & Noack (2000).













Fig. 6. Microscopia eletrônica de varredura de fragmentos de carbono pirogênico de: a) na fração argila e fração silte do solo; b-d) no solo. Todas as frações foram tratadas com ácido fluorídrico (HF) e foto-oxidadas por 4 h. As barras representam (a) 4 µm e (b-d) 20 µm. Fonte: Skjemstad et al. (1996).


Fig. 7. Gráficos de Van Krevelen de ácidos húmicos extraídos de solos da Amazônia. Fonte: adaptado de Novotny et al. (2006a).




Fig. 8. Espectros de ressonância magnética nuclear de 13C de ácidos húmicos extraídos de solos da Amazônia. Os espectros da direita apresentam os sinais de carbono não protonados (carbono aromático condensado) ou de alta mobilidade (CH3 e CH2 de cadeia longa). Em linha mais espessa são aqueles de carbono hibridizado sp3, indicando a sobreposição do sinal do carbono anomérico de carboidratos (sp3) à região dos carbonos aromáticos (sp2). Fonte: adaptado de Novotny et al. (2006a).


Fig. 9. Primeira derivada dos termogramas de ácidos húmicos extraídos de solos da Amazônia. Fonte: adaptado de Cunha (2005).



Tabela 1. Estimativa global de formação de carbono pirogênico no resíduo.


Fonte

Carbono

exposto (CE)

Fator de

conversão

Carbono pirogênico

no resíduo

Tg C ano-1

BC/CE (%)

Tg C ano-1

Mudança no uso da terra

1000 – 2000

1,5 – 3,0

15 – 60

Desflorestamento permanente

500 – 1400

1,5 – 3,0

8 – 42

Queimadas em savanas

400 – 2000

1,0 – 2,0

4 – 40

Combustão da madeira

300 – 600

2,5 – 3,5

8 – 21

Resíduos agrícolas

500 – 800

1,0 – 2,0

5 – 16

Total

2700 - 6800

-

40 - 179

BC/CE: black carbon (carbono pirogênico)/carbono exposto.

Tabela 2. Análise de grupos funcionais contendo oxigênio (cmol kg-1) em ácidos húmicos de solos antrópicos ricos em carbono pirogênico e em solos não antrópicos e pobres em carbono pirogênico.


Grupos

SAF

SNAF

Acidez Total (AT)

612a

575a

Acidez Carboxílica (AC)

435a

320a

AC em % da AT

71,07

55,65

Acidez Fenólica (AF)

177a

256a

AF em % da AT

28,93

44,34

COOH

OH

2,76

1,44

SAF: solo antrópico sob floresta; SNAF: solo não antrópico sob floresta. Letras diferentes na mesma coluna diferem significativamente a 5%.

Fonte: adaptado de Cunha (2005).
1   2   3   4   5   6   7   8   9


©principo.org 2016
enviar mensagem

    Página principal